Teaching Theory: Constructivism.
Overview:
A major theme in the theoretical framework of Bruner is that learning is an active process in which learners construct new ideas or concepts based upon their current/past knowledge. The learner selects and transforms information, constructs hypotheses, and makes decisions, relying on a cognitive structure to do so. Cognitive structure (i.e., schema, mental models) provides meaning and organization to experiences and allows the individual to "go beyond the information given".
As far as instruction is concerned, the instructor should try and encourage students to discover principles by themselves. The instructor and student should engage in an active dialog (i.e., socratic learning). The task of the instructor is to translate information to be learned into a format appropriate to the learner's current state of understanding. Curriculum should be organized in a spiral manner so that the student continually builds upon what they have already learned.
Bruner (1966) states that a theory of instruction should address four major aspects: (1) predisposition towards learning, (2) the ways in which a body of knowledge can be structured so that it can be most readily grasped by the learner, (3) the most effective sequences in which to present material, and (4) the nature and pacing of rewards and punishments. Good methods for structuring knowledge should result in simplifying, generating new propositions, and increasing the manipulation of information.
In his more recent work, Bruner (1986, 1990, 1996) has expanded his theoretical framework to encompass the social and cultural aspects of learning as well as the practice of law.
Scope/Application:
Bruner's constructivist theory is a general framework for instruction based upon the study of cognition. Much of the theory is linked to child development research (especially Piaget ). The ideas outlined in Bruner (1960) originated from a conference focused on science and math learning. Bruner illustrated his theory in the context of mathematics and social science programs for young children (see Bruner, 1973). The original development of the framework for reasoning processes is described in Bruner, Goodnow & Austin (1951). Bruner (1983) focuses on language learning in young children.
Note that Constructivism is a very broad conceptual framework in philosophy and science and Bruner's theory represents one particular perspective. For an overview of other Constructivist frameworks, see http://carbon.cudenver.edu/~mryder/itc_data/constructivism.html.
Example:
This example is taken from Bruner (1973):
"The concept of prime numbers appears to be more readily grasped when the child, through construction, discovers that certain handfuls of beans cannot be laid out in completed rows and columns. Such quantities have either to be laid out in a single file or in an incomplete row-column design in which there is always one extra or one too few to fill the pattern. These patterns, the child learns, happen to be called prime. It is easy for the child to go from this step to the recognition that a multiple table , so called, is a record sheet of quantities in completed mutiple rows and columns. Here is factoring, multiplication and primes in a construction that can be visualized."
Principles:
1. Instruction must be concerned with the experiences and contexts that make the student willing and able to learn (readiness).
2. Instruction must be structured so that it can be easily grasped by the student (spiral organization).
3. Instruction should be designed to facilitate extrapolation and or fill in the gaps (going beyond the information given).
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/constructivism/
http://www.languagecorpsasia.com
Teaching English in Thailand, Vietnam, China, Taiwan and Cambodia TEFL / TESOL & Teaching Job with LanguageCorps Asia
Showing posts with label Theory. Show all posts
Showing posts with label Theory. Show all posts
Saturday, September 8, 2012
Thursday, September 6, 2012
Teaching Theory - Cognitive Flexibility
Teaching Theory: Cognitive Flexibility.
Overview:
Cognitive flexibility theory focuses on the nature of learning in complex and ill-structured domains. Spiro & Jehng (1990, p. 165) state: "By cognitive flexibility, we mean the ability to spontaneously restructure one's knowledge, in many ways, in adaptive response to radically changing situational demands...This is a function of both the way knowledge is represented (e.g., along multiple rather single conceptual dimensions) and the processes that operate on those mental representations (e.g., processes of schema assembly rather than intact schema retrieval)."
The theory is largely concerned with transfer of knowledge and skills beyond their initial learning situation. For this reason, emphasis is placed upon the presentation of information from multiple perspectives and use of many case studies that present diverse examples. The theory also asserts that effective learning is context-dependent, so instruction needs to be very specific. In addition, the theory stresses the importance of constructed knowledge; learners must be given an opportunity to develop their own representations of information in order to properly learn.
Cognitive flexibility theory builds upon other constructivist theories (e.g., Bruner, Ausubel, Piaget) and is related to the work of Salomon in terms of media and learning interaction.
Scope/Application:
Cognitive flexibility theory is especially formulated to support the use of interactive technology (e.g., videodisc, hypertext). Its primary applications have been literary comprehension, history, biology and medicine.
Example:
Jonassen, Ambruso & Olesen (1992) describe an application of cognitive flexibility theory to the design of a hypertext program on transfusion medicine. The program provides a number of different clinical cases which students must diagnose and treat using various sources of information available (including advice from experts). The learning environment presents multiple perspectives on the content, is complex and ill-defined, and emphasizes the construction of knowledge by the learner.
Principles:
1. Learning activities must provide multiple representations of content.
2. Instructional materials should avoid oversimplifying the content domain and support context-dependent knowledge.
3. Instruction should be case-based and emphasize knowledge construction, not transmission of information.
4. Knowledge sources should be highly interconnected rather than compartmentalized.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/cognitive-flexibility-theory/
http://www.languagecorpsasia.com
Overview:
Cognitive flexibility theory focuses on the nature of learning in complex and ill-structured domains. Spiro & Jehng (1990, p. 165) state: "By cognitive flexibility, we mean the ability to spontaneously restructure one's knowledge, in many ways, in adaptive response to radically changing situational demands...This is a function of both the way knowledge is represented (e.g., along multiple rather single conceptual dimensions) and the processes that operate on those mental representations (e.g., processes of schema assembly rather than intact schema retrieval)."
The theory is largely concerned with transfer of knowledge and skills beyond their initial learning situation. For this reason, emphasis is placed upon the presentation of information from multiple perspectives and use of many case studies that present diverse examples. The theory also asserts that effective learning is context-dependent, so instruction needs to be very specific. In addition, the theory stresses the importance of constructed knowledge; learners must be given an opportunity to develop their own representations of information in order to properly learn.
Cognitive flexibility theory builds upon other constructivist theories (e.g., Bruner, Ausubel, Piaget) and is related to the work of Salomon in terms of media and learning interaction.
Scope/Application:
Cognitive flexibility theory is especially formulated to support the use of interactive technology (e.g., videodisc, hypertext). Its primary applications have been literary comprehension, history, biology and medicine.
Example:
Jonassen, Ambruso & Olesen (1992) describe an application of cognitive flexibility theory to the design of a hypertext program on transfusion medicine. The program provides a number of different clinical cases which students must diagnose and treat using various sources of information available (including advice from experts). The learning environment presents multiple perspectives on the content, is complex and ill-defined, and emphasizes the construction of knowledge by the learner.
Principles:
1. Learning activities must provide multiple representations of content.
2. Instructional materials should avoid oversimplifying the content domain and support context-dependent knowledge.
3. Instruction should be case-based and emphasize knowledge construction, not transmission of information.
4. Knowledge sources should be highly interconnected rather than compartmentalized.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/cognitive-flexibility-theory/
http://www.languagecorpsasia.com
Tuesday, September 4, 2012
Teaching Theory - Cognitive Dissonance
Teaching Theory: Cognitive Dissonance.
According to cognitive dissonance theory, there is a tendency for individuals to seek consistency among their cognitions (i.e., beliefs, opinions). When there is an inconsistency between attitudes or behaviors (dissonance), something must change to eliminate the dissonance. In the case of a discrepancy between attitudes and behavior, it is most likely that the attitude will change to accommodate the behavior.
Two factors affect the strength of the dissonance: the number of dissonant beliefs, and the importance attached to each belief. There are three ways to eliminate dissonance: (1) reduce the importance of the dissonant beliefs, (2) add more consonant beliefs that outweigh the dissonant beliefs, or (3) change the dissonant beliefs so that they are no longer inconsistent.
Dissonance occurs most often in situations where an individual must choose between two incompatible beliefs or actions. The greatest dissonance is created when the two alternatives are equally attractive. Furthermore, attitude change is more likely in the direction of less incentive since this results in lower dissonance. In this respect, dissonance theory is contradictory to most behavioral theories which would predict greater attitude change with increased incentive (i.e., reinforcement).
Scope/Application:
Dissonance theory applies to all situations involving attitude formation and change. It is especially relevant to decision-making and problem-solving.
Example:
Consider someone who buys an expensive car but discovers that it is not comfortable on long drives. Dissonance exists between their beliefs that they have bought a good car and that a good car should be comfortable. Dissonance could be eliminated by deciding that it does not matter since the car is mainly used for short trips (reducing the importance of the dissonant belief) or focusing on the cars strengths such as safety, appearance, handling (thereby adding more consonant beliefs). The dissonance could also be eliminated by getting rid of the car, but this behavior is a lot harder to achieve than changing beliefs.
Principles:
1. Dissonance results when an individual must choose between attitudes and behaviors that are contradictory.
2. Dissonance can be eliminated by reducing the importance of the conflicting beliefs, acquiring new beliefs that change the balance, or removing the conflicting attitude or behavior.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/cognitive-dissonance/
http://www.languagecorpsasia.com
According to cognitive dissonance theory, there is a tendency for individuals to seek consistency among their cognitions (i.e., beliefs, opinions). When there is an inconsistency between attitudes or behaviors (dissonance), something must change to eliminate the dissonance. In the case of a discrepancy between attitudes and behavior, it is most likely that the attitude will change to accommodate the behavior.
Two factors affect the strength of the dissonance: the number of dissonant beliefs, and the importance attached to each belief. There are three ways to eliminate dissonance: (1) reduce the importance of the dissonant beliefs, (2) add more consonant beliefs that outweigh the dissonant beliefs, or (3) change the dissonant beliefs so that they are no longer inconsistent.
Dissonance occurs most often in situations where an individual must choose between two incompatible beliefs or actions. The greatest dissonance is created when the two alternatives are equally attractive. Furthermore, attitude change is more likely in the direction of less incentive since this results in lower dissonance. In this respect, dissonance theory is contradictory to most behavioral theories which would predict greater attitude change with increased incentive (i.e., reinforcement).
Scope/Application:
Dissonance theory applies to all situations involving attitude formation and change. It is especially relevant to decision-making and problem-solving.
Example:
Consider someone who buys an expensive car but discovers that it is not comfortable on long drives. Dissonance exists between their beliefs that they have bought a good car and that a good car should be comfortable. Dissonance could be eliminated by deciding that it does not matter since the car is mainly used for short trips (reducing the importance of the dissonant belief) or focusing on the cars strengths such as safety, appearance, handling (thereby adding more consonant beliefs). The dissonance could also be eliminated by getting rid of the car, but this behavior is a lot harder to achieve than changing beliefs.
Principles:
1. Dissonance results when an individual must choose between attitudes and behaviors that are contradictory.
2. Dissonance can be eliminated by reducing the importance of the conflicting beliefs, acquiring new beliefs that change the balance, or removing the conflicting attitude or behavior.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/cognitive-dissonance/
http://www.languagecorpsasia.com
Saturday, August 18, 2012
Teaching Theory - Anchored Instruction
Teaching Theory: Anchored Instruction.
Anchored instruction is a major paradigm for technology-based learning that has been developed by the Cognition & Technology Group at Vanderbilt (CTGV) under the leadership of John Bransford. While many people have contributed to the theory and research of anchored instruction, Bransford is the principal spokesperson and hence the theory is attributed to him.
The initial focus of the work was on the development of interactive videodisc tools that encouraged students and teachers to pose and solve complex, realistic problems. The video materials serve as "anchors" (macro-contexts) for all subsequent learning and instruction. As explained by CTGV (1993, p52): "The design of these anchors was quite different from the design of videos that were typically used in education...our goal was to create interesting, realistic contexts that encouraged the active construction of knowledge by learners. Our anchors were stories rather than lectures and were designed to be explored by students and teachers. " The use of interactive videodisc technology makes it possible for students to easily explore the content.
Anchored instruction is close ly related to the situated learning framework (see CTGV, 1990, 1993) and also to the Cognitive Flexibility theory in its emphasis on the use of technology-based learning.
Scope/Application:
The primary application of anchored instruction has been to elementary reading, language arts and mathematics skills. The CLGV has developed a set of interactive videodisc programs called the "Jasper Woodbury Problem Solving Series". These programs involve adventures in which mathematical concepts are used to solve problems . However, the anchored instruction paradigm is based upon a general model of problem-solving (Bransford & Stein, 1993).
Example:
One of the early anchored instruction activities involved the use of the film, "Young Sherlock Holmes" in interactive videodisc form. Students were asked to examine the film in terms of causal connections, motives of the characters, and authenticity of the settings in order to understand the nature of life in Victorian England. The film provides the anchor for an understanding of story-telling and a particular historical era.
Principles:
1. Learning and teaching activities should be designed around a "anchor" which should be some sort of case-study or problem situation.
2. Curriculum materials should allow exploration by the learner (e.g., interactive videodisc programs).
For more about anchored instruction, visit the web site of John Bransford or the Jasper Woodbury project at Vanderbilt University.
References:
Bransford, J.D. et al. (1990). Anchored instruction: Why we need it and how technology can help. In D. Nix & R. Sprio (Eds), Cognition, education and multimedia. Hillsdale, NJ: Erlbaum Associates.
Bransford, J.D. & Stein, B.S. (1993). The Ideal Problem Solver (2nd Ed). New York: Freeman.
CTGV (1990). Anchored instruction and its relationship to situated cognition. Educational Researcher, 19 (6), 2-10.
CTGV (1993). Anchored instruction and situated cognition revisted. Educational Technology, 33 (3), 52- 70.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/anchored-instruction/
http://www.languagecorpsasia.com
Anchored instruction is a major paradigm for technology-based learning that has been developed by the Cognition & Technology Group at Vanderbilt (CTGV) under the leadership of John Bransford. While many people have contributed to the theory and research of anchored instruction, Bransford is the principal spokesperson and hence the theory is attributed to him.
The initial focus of the work was on the development of interactive videodisc tools that encouraged students and teachers to pose and solve complex, realistic problems. The video materials serve as "anchors" (macro-contexts) for all subsequent learning and instruction. As explained by CTGV (1993, p52): "The design of these anchors was quite different from the design of videos that were typically used in education...our goal was to create interesting, realistic contexts that encouraged the active construction of knowledge by learners. Our anchors were stories rather than lectures and were designed to be explored by students and teachers. " The use of interactive videodisc technology makes it possible for students to easily explore the content.
Anchored instruction is close ly related to the situated learning framework (see CTGV, 1990, 1993) and also to the Cognitive Flexibility theory in its emphasis on the use of technology-based learning.
Scope/Application:
The primary application of anchored instruction has been to elementary reading, language arts and mathematics skills. The CLGV has developed a set of interactive videodisc programs called the "Jasper Woodbury Problem Solving Series". These programs involve adventures in which mathematical concepts are used to solve problems . However, the anchored instruction paradigm is based upon a general model of problem-solving (Bransford & Stein, 1993).
Example:
One of the early anchored instruction activities involved the use of the film, "Young Sherlock Holmes" in interactive videodisc form. Students were asked to examine the film in terms of causal connections, motives of the characters, and authenticity of the settings in order to understand the nature of life in Victorian England. The film provides the anchor for an understanding of story-telling and a particular historical era.
Principles:
1. Learning and teaching activities should be designed around a "anchor" which should be some sort of case-study or problem situation.
2. Curriculum materials should allow exploration by the learner (e.g., interactive videodisc programs).
For more about anchored instruction, visit the web site of John Bransford or the Jasper Woodbury project at Vanderbilt University.
References:
Bransford, J.D. et al. (1990). Anchored instruction: Why we need it and how technology can help. In D. Nix & R. Sprio (Eds), Cognition, education and multimedia. Hillsdale, NJ: Erlbaum Associates.
Bransford, J.D. & Stein, B.S. (1993). The Ideal Problem Solver (2nd Ed). New York: Freeman.
CTGV (1990). Anchored instruction and its relationship to situated cognition. Educational Researcher, 19 (6), 2-10.
CTGV (1993). Anchored instruction and situated cognition revisted. Educational Technology, 33 (3), 52- 70.
Read more at http://teaching.concordia.ca/resources/learning-theories-and-models-for-teaching/anchored-instruction/
http://www.languagecorpsasia.com
Subscribe to:
Posts (Atom)